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Abstract. Landslides causes severe damages to the road network of a hit zone, in terms of both direct (partial or complete 

destruction of a road trait, blockages) and indirect (traffic restriction, cut-off of a certain area) costs. Thus, the identification 

of the parts of the road network which are more susceptible to landslides is fundamental to reduce the risk to the population 

potentially exposed and the money expense caused by road damaging. For these reasons, this paper aimed to develop and test 

a data-driven model based on the Genetic Algorithm Method for the identification of road sectors that are susceptible to be hit 15 

by shallow landslides triggered in slopes upstream to the infrastructure. This work also analyzed the importance of considering 

or not the sediment connectivity on the estimation of the susceptibility. The study was carried out in a catchment of north-

eastern Oltrepò Pavese (northern Italy), where several shallow landslides affected roads in the last 8 years. The random 

partition of the dataset used for building the model in two parts (training and test subsets), within a 100-fold bootstrap 

procedure, allowed to select the most significant explanatory variables, providing a better description of the occurrence and 20 

distribution of the road sectors potentially susceptible to damages induced by shallow landslides. The presented methodology 

allows the identification, in a robust and reliable way, of the most susceptible road sectors that could be hit by sediments 

delivered by landslides. The best predictive capability was obtained using a model which took into account also the index of 

connectivity, calculated according to a linear relationship. Most susceptible road traits resulted to be located below steep slopes 

with a limited height (lower than 50 m), where sediment connectivity is high. Different scenarios of land use were implemented 25 

in order to estimate possible changes in road susceptibility. Land use classes of the study area were characterized by similar 

connectivity features with a consequent loss of variations also on the susceptibility of the road networks according to different 

scenarios of distribution of land cover. Larger effects on sediment connectivity and, as a consequence on road susceptibility, 

could be due to modifications in the morphology of the slopes (e.g. drainage system, modification of the slope angle) caused 

by the abandonment or by the recovery of cultivations. The results of this research demonstrate the ability of the developed 30 

methodology in the assessment of susceptible roads. This could give to the managers of an infrastructure information on the 
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criticality of the different road traits, thereby allowing attention and economic budgets to be shifted towards the most critical 

assets, where structural and non-structural mitigation measures could be implemented. 

Keywords: roads, shallow landslides, susceptibility 

1 Introduction 

Landslides are an important geohazard in many regions of the world, causing severe economic damages each year in the order 5 

of hundreds of billions dollars (Zezere et al., 2007; Salvati et al., 2014; Gariano and Guzzetti, 2016). Slope instability induces 

significant damage, deaths and economic losses to infrastructures, in particular to roads  (Van Westen et al., 2006; Klose et 

al., 2015). The main negative consequences of instability phenomena on roads are (Bil et al., 2014): i) the partial or complete 

destruction of a road trait, which can also provoke human losses; ii) the traffic restriction due to the blockage of a hit road, 

which may affect the entire network causing congestion; iii) the cut-off of certain areas that cannot be reached by alternative 10 

routes.  

Thus, it is fundamental to identify which sectors of a road network are more susceptible to landslides, in order to reduce the 

risk to the population potentially exposed and the money expense caused by road damaging. This aim is particularly important, 

also because several researches (Nemry and Demirel, 2012; Matulla et al., 2017) stressed that the exposure of road networks 

to slope instabilities could increase as a consequence of the climate change and of the economic rising income in different 15 

countries. 

According to the geomorphological and triggering features, landslides affecting roads can be distinguished in: i) landslides in 

correspondence of the infrastructure; ii) landslides triggered in a natural or an engineered hillslope upstream to the road, whose 

transportation and/or accumulation zone hit the infrastructure. 

The triggering mechanisms of the first landslide type are strictly related to local hydrological and geotechnical settings that 20 

are related to the road presence. These factors generally highlight an incorrect construction or management of the infrastructure 

regardless of the natural features of the slopes where the infrastructure was built (Sidle and Ochiai, 2006; Muenchow et al., 

2012; D’Amato Avanzi et al., 2013; Brenning et al., 2015). On the other hand, the triggering mechanism and landslide runout 

of the second landslide type can be related to the geological, geomorphological and hydrological predisposing factors of the 

natural or engineered slopes upstream to the roads. Furthermore, these events are the most widespread in terms of affected 25 

routes, causing in many cases the involvement of extended sectors of hilly and mountainous road networks (Quinn et al., 2010; 

Bil et al., 2014). 

In recent years, several data-driven methodologies were built to identify the susceptible sectors of a road network towards 

landslides (Budetta, 2004; Jaiswal et al., 2010a, 2010b, 2011; Quinn et al., 2010; Michoud et al., 2012; Bil et al., 2014; Ramesh 

and Anbazhagan, 2015; Pellicani et al., 2017). These methods are based on quantitative statistical relationships between 30 

predisposing factors and a response variable, assuming that an event is most likely to occur under similar ground conditions 
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to previous events (Varnes, 1984). They present the advantage of being more objective and easily applicable at different scales 

(from site-specific to regional), as well as capable of managing large sets of predisposing factors (Corominas et al., 2014).   

Data-driven models used for the characterization of susceptible routes were based on a multivariate analysis (Dai and Lee 

2002; Chen and Wang 2007), which predicts the spatial distribution of roads hit by landslides through the estimation of the 

relations and the relative weight between the predisposing factors and the response variable (roads affected by landslides). 5 

Such methods do not consider the non-linear relations between the predisposing factors and the response variables. However, 

the non-linearity of the system should be considered, since the changing in the environmental and geological conditions leads 

to a consequent interaction of the mobilized materials with roads (Goetz et al., 2011). Moreover, neglecting a possible non-

linearity in the model could decrease its predictive performance, due to a limitation in highlighting the complex behaviors of 

the phenomena (Phillips 2003, 2006). Thus, it could be useful implementing a model based on a non-linear regression 10 

technique, such as the Generalized Additive Model (GAM; Hastie and Tibshirani, 1990). 

Furthermore, the methods previously developed did not take into account for the potential slope sediments mobilized by the 

landslide triggering, to reach the road network in downstream area. This aspect is instead well described by the amount in 

sediment connectivity, which influences the path and the travel distance of the materials mobilized by a slope failure till a 

potential natural or anthropogenic barrier (e.g. a river, a road) (Cavalli et al., 2013; Tarolli and Sofia, 2016; Persichillo et al., 15 

2018). In this way, the landslide runout can be estimated and inserted in the modeling of roads susceptibility, without 

employing numerical or physically-based methods which require several rheological and geotechnical data not easily 

measurable for the slope materials (Hungr, 1995; Fannin and Wise, 2001; Pastor et al., 2014; Fan et al., 2017). 

It is also worth noting that scenarios of road susceptibility distributionrelated to the modifications of land use in a particular 

area were not considered so far. However, land use changes can have significant impacts both on the locations of landslides 20 

triggering zones (Glade, 2003; Begueria, 2006; Reichenbach et al., 2014; Persichillo et al., 2017) and on the connectivity of 

the mobilized sediments (Foerster et al., 2014; Lopez-Vicente et al., 2013, 2016). Thus, susceptibility scenarios of different 

land use distributions may allow to identify land management practices able to reduce the slope instability which can induce 

damages to roads. 

For these reasons, a non-linear data-driven method, for the identification of road network sectors more susceptible to shallow 25 

landslides triggered in slopes upstream to the infrastructure, was developed and tested. The main objectives of the paper are: 

i) the development and the test of a data-driven non-linear methodology, based on the GAM, able to identify the relations 

between predisposing and response variables for the assessment of the road sectors susceptible to shallow landslides triggered 

in slope upstream to the infrastructure; ii) the evaluation of the importance of considering or neglecting sediment connectivity 

in the susceptible road segments modelling; iii) the analysis of the effects resulting from different scenarios of land use 30 

distribution on the routes distribution that could be affected by shallow landslides. 
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2 The study area 

The analysis was carried out in a catchment located between Scuropasso river and Versa river catchments, in Oltrepò Pavese, 

in the northern termination part of the Italian Apennines (Fig. 1). The study area is 14 km2 wide and presents an elevation 

range between 88 and 295 m a.s.l. The morphological structure is typical of the Pede-Apennine margin of Oltrepò Pavese and 

it is closely related to both the lithology and the tectonic/neotectonic setting of the Apennine margin. It is characterized by a 5 

medium-high slope gradient, with slope angles higher than 10°, with prominent altimetric irregularities along ridge lines and 

channel network in narrow valleys (Bordoni et al., 2015). Bedrock is characterized by a Mio-Pliocenic succession formed by 

medium low-permeable arenaceous conglomeratic materials (Monte Arzolo Sandstones, Rocca Ticozzi Conglomerates) 

overlying impermeable silty-sandy marly bedrock (Montù Beccaria Formation, Sant'Agata Fossili Marls) and evaporitic chalky 

marls and gypsum (Gessoso-Solfifera Formation) (Vercesi and Scagni, 1984). Superficial soils, derived by bedrock 10 

weathering, are mainly clayey-sandy silts and clayey-silty sands. Soil depth ranges from a few centimeters to values lower 

than 2.5 m. 

The study area is characterized by a traditional viticulture vocation, with grapevine cultivation that represents the main 

economic branch of this zone. Till the 1980s, more than 90% of the territory was cultivated with vineyards, where manual 

cultivation practices predominated (Fig. 2a, b, c). This situation represented the highest diffusion of vineyards in the study 15 

area, identifying all the hillslopes that are effectively adapt for grapevine implantation and cultivation. Instead, in the last 40 

years, more than 40% of previously cultivated slopes were abandoned, with a correspondent progressive increase in woodlands 

(+13% from 1980 to 2007-2015) and in uncultivated areas generally composed by shrubs and grasses (+10% from 1980 to 

2007-2015) (Fig. 2a, d). In the period between 2007-2015, land use changes significantly decreased and land use classes 

distribution kept steady. In 2007-2015 time span, 49% of the area was occupied by vineyards, 10% by uncultivated areas, 16% 20 

by woodlands and 16% by urban areas (Fig. 2d). Other land use classes are present in a percentage lower than 5%. 

This abandonment was due to the conversion from manual to mechanical cultivation practices, that increased the difficulties 

in the maintenance of vineyards, especially for those located on very steep slopes (> 25°) (Persichillo et al., 2017).  

These land use changes reflected the efforts made to achieve a greater efficiency through mechanization of agricultural 

practices for improving economic productivity. Moreover, societal changes, together with the decreasing number of people 25 

actively cultivating the area, caused a reduction in land care practices and maintenance works in both abandoned and still 

cultivated vineyards (Persichillo et al., 2017, 2018). 

A primary road network (81 km long and generally 3–5 m wide) crosses the study area; it is composed of provincial and 

municipal roads that connect different villages and towns (Fig. 3). The road sectors were built in correspondence of the valley 

floors or hillside, cutting a portion of a hillslope in correspondence of its medium part realizing a halfway road. Furthermore, 30 

in the case of halfway roads, a 3–5 m height trench was built upstream to the road sector. 

This area was recently affected by several shallow landslides triggered by intense rainfall events (Bordoni et al., 2015). The 

most important one occurred in 27–28 April 2009 (160 mm/62 h), and induced 532 failures. Other shallow landslides occurred 
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during the events of March/April 2013 and of 28 February–2 March 2014, triggering 19 and 18 shallow failures, respectively. 

Lower numbers of phenomena reflect the lower amount of rainfall recorded during these events (40 mm in about 30-50 h in 

March/April 2013 events; 69 mm in 42 h in 28 February–2 March 2014 event).  

These landslides had an average length of about 35 m and their area varied from a minimum of 13 m2 to a maximum of almost 

9,000 m2, with an average of about 477 m2. The failure surface was mainly detected between 0.9 and 1 m from the ground 5 

level, generally in correspondence between the soil-bedrock contact. 30% of these shallow landslides triggered in vineyards, 

while an equal percentage of phenomena developed in woodlands or uncultivated areas. According to Cruden and Varnes 

(1996) classification, most of the shallow landslides can be classified as roto-translational slides evolved into flows, with 

width/length ratio > 1. Moreover, 24 failures (5% of the total number), were roto-translational slides affecting the trench in 

correspondence of a cut of a halfway road (B2 type; Zizioli et al., 2013; Persichillo et al., 2018).  10 

Besides the partial or complete destruction of cultivated vineyards, the landslides significantly affected the road network with 

severe damage (Fig. 3) regarding the partial or complete destruction of road traits, debris accumulation and blockage, causing 

traffic restriction and the cut-off of villages and towns. 

In particular, 2.5 km of the principal road network was affected by shallow landslides in the last years. 134 shallow landslides 

(23%) hit roads: 24 of them (15%) were roto-translational slides developed in correspondence of the trench upstream the road 15 

trait, while the remaining 90 phenomena (85%) were shallow landslides triggered in slopes upstream the routes on cultivated 

or abandoned hillslopes. The length of the road sectors hit by a shallow landslide ranged between 2 and 94 m. 

3 Methods 

3.1 Development and test of the data-driven model 

3.1.1 Predictor variables 20 

A data-driven methodology based on GAM was implemented for the assessment of roads that could be hit by shallow 

landslides. A schematic flow-chart of this methodology is shown in Fig. 4.Such procedure is similar to one proposed by 

Persichillo et al. (2016) for the assessment of the shallow landslide susceptibility in different settings. It was refined in this 

paper for the application to roads susceptibility towards landslides. In particular, different predictor variables and response 

variables were considered, according to their influence on the possible interaction between landslide mobilized materials and 25 

the road network located downstream.  

In the model, 11 predictor variables were identified. 8 of these parameters were extracted by a 1 m resolution LiDAR-derived 

Digital Elevation Model (DEM), through SAGA GIS (System for Automated Geoscientific Analyses). The DEM was available 

from the Italian Ministry of Environment and Protection of the Land and Sea, following the realization of the Piano 

Straordinario di Telerilevamento Ambientale (Extraordinary Plan of Environmental Remote Sensing - PST-A). These 30 

attributes were: slope angle (SL), slope aspect (ASP), slope curvature (CURV), slope length (LEN), slope height (HEI), 

catchment area (CA), catchment slope (CS) and topographic wetness index (TWI).   
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SL, ASP, and CURV were calculated through Zevenbergen and Thorne (1987)' approximations. SL strongly controls the 

velocity of the material mobilized by a shallow landslide, thus its capacity of traveling for long distances from the source areas 

(Fannin and Wise, 2001; Catani et al., 2013; Fathani et al., 2017). ASP influences the soil moisture and the vegetation growth, 

that can have a key role on the susceptibility of a slope to shallow failures (Van Westen et al., 2008; Jaiswal et al., 2010a). 

CURV influences the amount of water runoff, the rate of underground water movement and the potential rates of sedimentation 5 

and erosion (Dai et al., 2002; Kritikos and Davis, 2015).  

LEN and HEI are key parameters for the estimation of the distance travelled by a landslide from its source area and of the 

velocity of the displaced material when it hits an infrastructure (Bathurst et al., 1997; Chau et al., 2004; Martinovic et al., 

2016).  

Multiple-flow direction algorithm (Quinn et al., 1991) was used to obtain CA and CS. CA is used as a proxy for soil moisture 10 

and soil depth, thus for the potential amount of materials that can be mobilized by the shallow landslide and that can reach an 

infrastructure (Brenning et al., 2015). CS conditions the destabilizing forces upstream that can provoke the development of a 

landslide (Brenning et al., 2015; Persichillo et al., 2016). TWI highlights the water fluxes along the slopes and the position of 

the accumulation points in a catchment (Seibert et al., 2007). 

Along with the DEM-derived predictor variables, the Euclidean distance from shallow landslide source area (DIST) was 15 

calculated, considering the lowest distance between the landslide source area and a considered road trait. This parameter is 

adapted for slopes with homogeneous gradient, aspect and curvature and it is important to understand the capacity of the 

mobilized materials to travel along a slope and to reach a route located downstream (Bil et al., 2014; Brenning et al., 2015). 

The source area of each slope failure was extracted through the procedure of Galve et al. (2015), selecting 25% of the landslide 

area in correspondence to the highest elevations.  20 

Bedrock geology (GEO) was also considered as predictor. GEO influences the geomechanical, geotechnical, rheological and 

hydrological properties of the soil, which have effects on the runout of a landslide (Hungr, 1995; Pastor et al., 2014). GEO 

was obtained from the geological map of the studied catchment, which was obtained by the Department of Earth and 

Environmental Sciences of University of Pavia through field surveys.  

Different authors (Budetta, 2004; Jaiswal et al., 2010a, 2010b, 2011; Quinn et al., 2010; Michoud et al., 2012; Bil et al., 2014; 25 

Ramesh and Anbazhagan, 2015; Pellicani et al., 2017) had already used some of the previously described predictor variables 

in different data-driven model aiming to assess roads susceptible to be hit by shallow landslides. Until now, sediment 

connectivity has not been considered yet as a predictor variable influencing the susceptibility of road network. Persichillo et 

al. (2018) demonstrated that, in two catchments of Oltrepò Pavese, the road sectors hit by the materials mobilized by shallow 

landslides occurred upstream are the ones located close to slopes characterized by the lowest or the highest values of sediments 30 

connectivity along the entire catchment. In order to verify the potential influence of this parameter in discriminating the 

susceptible road sectors, an index of sediment connectivity within the predictor variables of the model was inserted. 

The index of sediment connectivity (IC), defined by Borselli et al. (2008), evaluates the potential connection between hillslopes 

and features, which act as targets or storage areas (sinks) for mobilized sediments (e.g., channels, basin outlet, lakes, road 
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network). In the proposed model, IC, calculated according to the approach by Cavalli et al. (2013), was implemented for a 

better characterization of surface processes and properties and to exploit a high-resolution DEM. For further details on the 

changes introduced in the IC calculation following this scheme, we refer to Cavalli et al. (2013) and Crema and Cavalli (2018).  

IC is calculated according to Eq. (1) combining the upslope (Dup) and downslope (Ddn) components of connectivity, 

respectively: 5 

𝐼𝐶 = 𝑙𝑜𝑔10
𝐷𝑢𝑝

𝐷𝑑𝑛
             (1) 

IC can have values in the range of [−∞, +∞], with connectivity increasing for larger IC values (Cavalli et al., 2013). IC was 

calculated through the stand-alone application SedInConnect 2.3 (Crema and Cavalli, 2018). 

In the calculation of IC, both the Dup and Ddn depend on a weighting factor (W) (Eq. 2, 3): 

𝐷𝑢𝑝 = 𝑊𝑆̅̅ ̅̅̅√𝐴             (2) 10 

𝐷𝑑𝑛 = ∑
𝑑𝑖

𝑊𝑖𝑆𝑖
𝑖              (3) 

where, S is the average slope gradient of the upslope contributing area, A is the upslope contributing area, di and Si are the 

length of the flow path and the slope gradient for the ith cell, respectively. 

W that is intended to model the impedance to sediment fluxes was extracted in two different ways: 

1) according to the linear formulation of W (Eq. 4) as a function of land use: 15 

𝑊𝑙𝑖𝑛 = 1 − 𝑛             (4) 

, where n Overland Flow Manning's n Roughness Value, which depends on the land use type (Tab. 1); 

2) according to the non-linear approach proposed by Gay et al. (2015) and Kalantari et al. (2017) as a function of the 

morphological properties and of the land use characteristics (Eq. 5):  

𝑊𝑛𝑙 =
1

1+𝑒−0.5(𝑥−𝑥0)
(1 −

𝑅𝑖

𝑅𝑖𝑚𝑎𝑥
)          (5) 20 

, where RI is the roughness index dependent on the surface morphology variability (Cavalli et al., 2008; Cavalli and Marchi, 

2008), RImax is the highest value of RI in the study area, x0 is the midpoint of the distribution function of RI in an area. 

According to the different ways of calculation, IC distribution changes (Kalantari et al., 2017). In the considered case study, 

IC was calculated with both the approaches, producing two IC maps (IClin obtained implementing Wlin, ICnl obtained 

implementing Wnl), inserted alternatively in the model for the assessment of the roads susceptible to shallow landslides.  25 

It is worth noting that, for each trait of the road network analyzed, the value of each assigned predictor corresponded to the 

one of the slope immediately upstream the road trait, where a landslide, that could hit this sector, could be triggered. This is 

consistent with the features of the slopes where shallow landslides occurred in past in the study area. In fact, from the source 

area to the accumulation zone of each landslide, the failed slopes kept similar morphological and hydrological features, in 
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terms of slope angle, exposition, curvature and hydrological features (Bordoni et al., 2015; Persichillo et al., 2016). Maps of 

the predictor variables were produced for the study area at a resolution of 1 m, as the input DEM. 

 3.1.2 Response variable 

A detailed inventory map of the road sectors affected by shallow landslides in the study area was prepared and used as response 

variable of the model. The inventory map of the affected road traits include all the sectors hit by the shallow landslides occurred 5 

in the study area during 27–28 April 2009, March/April 2013 and 28 February–2 March 2014rainfall events. For 2009 event, 

color aerial photographs at a resolution of 15 cm acquired immediately after the event were examined (Persichillo et al., 2017). 

For 2013 event, affected road traits were identified by visual interpretation of Pleiades satellite images with a resolution of less 

than 1 m (Persichillo et al., 2017). For 2014 event, slope failures and affected roads immediately after the event were detected 

through field surveys; the identified phenomena were mapped through a GPS tool, whose resolution is less than 2.5 m.  10 

In the inventory map, a binary information was inserted: a value equal to 0 was assigned to the road segments not affected by 

a shallow landslide, while a value of 1 was assigned to each hit road trait. The resolution of the map of the response variable 

was set as the ones of the predictor variable (1 m). 

It is worth noting that the inventory maps referred to the primary road network of the study area, composed of provincial and 

municipal routes. This was considered because this network contains the most affected road sectors, in terms of economic 15 

damages and indirect losses (restriction of traffic, cut-off of villages for the blockage of the road). 

3.1.3 Implementation of GAM model 

The data-driven methodology developed for assessing susceptible roads was based on GAM. GAM is an extension of the 

Generalized Linear Model (GLM), in which the linear function is replaced by an empirically fitted smooth function that allows 

fitting the data in the more likely functional form (Hastie and Tibshirani, 1990; Goetz et al., 2011). GAM  uses a link function 20 

to relate the mean (μ) of the response variables (probability that a road sector could be hit by a landslide) and the sum of 

smooth functions of the predictor variables (Jia et al., 2008) (Eq. 6):  

𝑔(𝜇) = ∑ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1           (6) 

, where g is the link function and the fi are smooth function (typically splines), each dependent on a single predictor variable 

xi chosen in a set of n variables xi…xn. Starting from null model, each predictor variable can be included in the GAM model 25 

as linear (untransformed), non-linear (non-parametrically transformed with two equivalent degrees of freedom), or not included 

in the model. Predictor variables were selected through the minimization of Akaike information criterion (AIC) (Goetz et al. 

2011; Persichillo et al., 2016). 

GAM was implemented through ‘gam’ package of R software (Hastie, 2013). The adopted procedure was composed of 

following steps.  30 
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The first step was the application of a multicollinear analysis between the numerical predictor variables. Multicollinearity 

verifies when some predictor variables are linearly correlated among them to avoid redundancy that could affect the numerical 

stability (Farrar and Glauber 1967). The condition indexes of the matrix of the independent variables was calculated. Variables 

featuring such an index higher than 30 were considered not independent, thus they were excluded from the analyses to reduce 

collinearity (Belsley et al., 1980).  5 

In the second step, a database formed of an equal number of road pixels affected by shallow landslides and not affected was 

implemented in order to avoid the over-estimation of non-landslide areas, which are much wider than landslide ones (Dai and 

Lee 2002; Ayalew and Yamagishi, 2005; Persichillo et al., 2016). Then, this database was subdivided into training and test 

sets. The training set, corresponding to 2/3 of the dataset, was used to fit the model; whereas the test set, forming of the remnant 

1/3 of the dataset, was used to verify the accuracy of the model. Training and test sets were randomly selected for 100 times 10 

according to a bootstrap procedure. The most frequent predictor variables (selected 80 times at least by the bootstrap procedure) 

were used to build the final susceptibility model. Moreover, linear and non-linear predictors were identified according to the 

higher percentage of selection of each parameter.  

Model forecasting capability constituted the third step of model scheme. A 100-fold repetition of holdout method for regression 

with a binary response, consisting of a random sub-sampling of different training and test sets, in the proportion of 2/3 for 15 

testing and 1/3 for test, was implemented. The accuracy calculated for these iterations in all training and test sets was averaged 

to obtain its overall value. The considered training and test sets were the ones created through the 100 bootstrap model 

selection. The area under the Receiver Operating Characteristic (ROC) curve (AUC) (Hosmer and Lemeshow, 2000) was 

computed to evaluate the model ability to discriminate affected or not road sectors, furnishing a further measure of the accuracy 

of the model. The AUC can take values from 0.5 (no discrimination) to 1.0 (perfect discrimination; Spitalnic, 2004). Moreover, 20 

the mean value and the bootstrap 95% confidence intervals of the 100 AUC obtained from the 100-fold bootstrap procedure 

for the overall accuracy of the model were calculated.  

Furthermore, the 100 fitted bootstrap models were used to extend the prediction to the whole road sectors to obtain the 

distribution of probability. Thus, the map of the susceptibility to be hit by shallow landslides was obtained from the mean 

values of each bootstrap distribution of 100 probability values. Also a prediction uncertainty was associated with to each 25 

estimated probability was estimated through the calculation of by calculating the bootstrap 95% confidence intervals of the 

susceptibility. Different classes of probability susceptibility were created, subdividing into 4 intervals the probability values 

in the susceptibility map: low (0 <p ≤ 0.25), medium–low (0.25 < p≤ 0.50), medium–high (0.50 < p ≤ 0.75), high (0.75 < p ≤ 

1).   

The number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) was further obtained 30 

comparing the susceptibility map with the response variable map used to build to model (Jollifee and Stephenson, 2003). For 

making this comparison, susceptibility values were classified as a binary variable: 1 was assigned to values higher than 0.5 

(modeled pixel hit by a landslide), while 0 was assigned to values lower than 0.5 (modeled pixel not affected by a landslide). 
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It is worth noting that the susceptibility was calculated considering a spatial resolution of 1 m, as the input predictors, and for 

a buffer of 5 m from the middle of each road sector. 

To assess the effect of considering or not IC in modeling the susceptibility, three models were produced and compared: Model 

1) using all the predictor variables except for the IC; Model 2) considering all the predictors with IClin; Model 3) considering 

all the predictors with ICnl. 5 

3.2 Change in susceptibility according to different scenarios of land use 

IC depends on morphological features and the land use of hillslopes, due to the presence of W factor. On the hypothesis that 

morphological features does not change, IC maps were created using particular land use distribution, representative of potential 

situations which could characterize the study area.  

Besides the current scenario used for building the susceptibility models at this time, other three scenarios were considered.  10 

The second scenario (Scenario 2) consists of the 1980 land use map, where the maximum extension of cultivated vineyards 

was reached (Fig. 2c). Thus, this scenario represents the possible distribution of vineyards in the case of a complete recovery 

of the abandoned areas since 1980s.  

The third scenario (Scenario 3) corresponded to the actual scenario, with an interruption in the increase of abandoned areas 

without the recovery of the previously cultivated slopes. According to this, uncultivated areas completely disappear and they 15 

convert into woodlands (Fig. 5a). This scenario is consistent with the new land use management policies that were developed 

at the municipal level in the study area, aiming at regulating the diffusion of uncultivated areas (Rural Police Regulation, 2008; 

Persichillo et al., 2017).  

The fourth scenario (Scenario 4) corresponded to a further increase in the abandonment of cultivated grapevines (Fig. 5b). 

According to this, actual uncultivated areas transform into woodlands, while further uncultivated ones develop in 20 

correspondence of actual vineyards. The slopes where abandonment was supposed are the currently cultivated ones with 

similar morphological features (slope angle higher than 15°) to the abandoned areas in the period 1980–2015. The increase in 

abandoned areas was kept equal to 22%, as that one occurred from the period 1980–2015. 

Different IC scenarios were then created using these land use distributions and they were inserted in GAM model for assessing 

the susceptibility change of road traits in function of this parameter. Other morphological and hydrological input predictors 25 

were kept steady. The model used for these reconstructions corresponded to the one that had the best predictive performance 

considering the actual situation.  
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4 Results 

4.1 Map of IC reconstructed through linear and non-linear methodology 

First, the distribution of IC for the actual conditions, reconstructed through the linear (IClin) and non-linear (ICnl) calculation 

of the W factor, was analyzed (Fig. 6). This analysis was done to highlight the differences on the input IC used in modeling 

road susceptibility. 5 

In the study area, IClin ranged between -7.00 and 1.75, while ICnl values ranged between -4.20 and 2.23 (Fig. 7). The average 

value of IC distribution was -3.17 for IClin and -3.57 for ICnl, while the standard deviation was similar for both the distributions 

(0.72 and 0.65, respectively). The map obtained with the linear implementation of W in IC calculation showed values averagely 

higher than the ones obtained with the non-linear W methodology in the corresponding sectors (Fig. 6).  

In these analyses, IC values were classified into four classes (low, medium-low, medium-high, high), by identifying classes 10 

limits that best grouped similar values and maximized the differences between classes using the Jenks' natural breaks (Jenks, 

1967), following the approach used in similar contexts by Tiranti et al. (2016), Surian et al. (2016) and Tarolli and Sofia (2016). 

IClin map highlighted that the northern and western parts of the catchment were characterized by medium-high and high 

connectivity almost totally (Fig. 6a). All the slopes with a high gradient (generally higher than 15°) presented medium-high 

and high connectivity features. Highest connectivity values were reached in road trenches with limited slope height (lower 15 

than 20 m) and at the bottom of hillslopes characterized by high slope angle (higher than 15-20°) and by slope height in the 

order of 35-70 m. 

Instead, ICnl map indicated lower connectivity in all the sectors of the study area (Fig. 6b). In particular, where IC lin map 

showed a wide diffusion of slopes with medium-high and high connectivity, ICnl highlighted especially medium-low and low 

sediment connectivity (Fig. 6b). Only few areas, close to road segments, were characterized by high connectivity (Fig. 6d). 20 

These corresponded to the road trenches characterized by a slope height lower than 20 m. It is worth noting that both 

reconstructions showed low and medium-low connectivity in those areas where plain areas or hillslopes with slope angle lower 

than 10° are present (Fig. 6). 

4.2 GAM models implementation 

4.2.1 Selection of the explanatory variables 25 

Three GAM models were tested on the basis of the different set-up of the input predictors. The first phase was the selection of 

the variables to introduce in each model. It is important to note that all the predictors were not collinear so all these were 

inserted in the modelling. For each model, the variables whose selection frequency was higher than 80% in the 100-fold 

bootstrap procedure were selected. It was found that the variables selected were the same ones for all three models, with similar 

selection frequency values (Tab. 2). It is worth noting that IC was taken into account only in Model 2 and Model 3, and then 30 

consequentially selected in both these models (Tab. 2). Besides IC (having a selection frequency equal to 100% in both Models 

2 and 3), the variables selected are the following (Tab. 2): SL (97%), CURV (87%), HEI (88–92%), CS (100%), TWI (85–
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95%), DIST (100%), GEO (100%) in all the three models. ASP, LEN, and CA were excluded from all the models. Among 

these variables, only CA had a quite high frequency of selection (56-66%), but it fell under the defined threshold (Tab. 2). The 

selected continuous explanatory variables (all the predictors, except GEO) were distinguished into linear or non-linear, on the 

basis of the higher percentage of selection obtained in the bootstrap procedure. SL and HEI were chosen as linear, while 

CURV, CS, TWI, DIST, and IC were selected as non-linear (Tab. 2). Despite the different types of calculation of the IC 5 

implemented in Model 2 (IClin) and in Model 3 (ICnl), this variable was evaluated as significant in both this model, with a 

frequency of selection equal to 100%. Moreover, IC was chosen as a non-linear variable in both these models IC (Tab. 2). 

4.2.2 Predictive performance and susceptibility maps of the models 

Model 1, that did not consider IC within the input predictors, is characterized by a fair predictive capability. In fact, AUC of 

the training and the test sets of this model were equal to 0.71 and 0.70, respectively (Tab. 3). AUC of the final susceptibility 10 

map produced with Model 1 is similar to those of training and test sets (0.74; Tab. 3). However, the predictive capability 

increased whether IC parameter was added among the predictor variables. In particular, AUC of training and test sets increased 

till 0.82 for Model 3, that considered also ICnl. For this model, AUC of the final susceptibility map was of 0.83, with an increase 

of 0.09 respect to Model 1 (Tab. 3). It is important noting that a better effectiveness was reached if IClin was taken into account 

in a GAM model (Model 2). AUC of training and test sets reached values of 0.90, while AUC of the final susceptibility map 15 

of model 2 was of 0.94. According to Spitalnic (2004), a model with similar predictive performances can be classified as 

excellent. 

Table 3 also highlighted very little values of standard deviation of AUC of training and test sets of each model, that maintained 

equal to 0.01. This confirmed the reliability of the procedure used to build up the different models.  

Furthermore, the bootstrap 95% confidence intervals of AUCs were every of 0.02. This result is also confirmed by the very 20 

narrow bootstrap 95% confidence bands of ROC curves (Fig. 8a, b, c). The maps showing the bootstrap 95% confidence 

intervals of the probability for each road trait to be hit by a shallow landslide are illustrated in Fig. 8. As confirmed by the low 

values of the confidence intervals, remaining lower than 0.25, it is worth noting that the spatial variability of this probability 

is generally low in the entire road network of the study area for each model. 

Besides, The predictive capability of the models were also evaluated by computing the values of the four indexes of a four-25 

fold plot. TP and TN were significantly higher in Model 2 respect to Model 1 and 3, while FP and FN were significantly lower 

in the same model that the other two (Fig. 8d). TP and TN reached values of 90.0 and 84.8%, respectively, in Model 2, 

highlighting an increase of 5.1–13.7% respect to Model 3 and of 13.3–30.6% respect to Model 1. The highest effectiveness of 

Model 2 was confirmed also by the lowest values of FP and FN (10.0 and 15.2%, respectively), that were lower of 5.4–35.8% 

than the results of Model 1 and Model 3 (Fig. 8d). 30 

The susceptibility maps for the road network extracted by GAM models are in Fig. 10. 
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Model 1 classified 46.9% of the road network in medium-high and high susceptibility classes. This percentage is significantly 

higher than those obtained for Model 2 and Model 3 (Fig. 11). The widespread of of high susceptibility areas in Model 1 

explains also the high values of FP measured for this model. 

Model 2 and Model 3, also considering IC within predictors, classified a lower percentage of the road network in medium-

high and high susceptibility classes which are overall of 15.4% and 18.3%, respectively. (Fig. 11). The number of high 5 

susceptible road traits of Model 3 seems overestimated respect to the real situations, as demonstrated by the higher FP and FN 

than Model 2 (Fig. 8d). Model 2 presented a higher predictive performance than the other models, as confirmed by the 

quantitative indexes calculated for GAM model. It classified 15.4% of the road network of the study area in medium-high and 

high susceptibility classes and the remnant 85.6% in low and medium-low classes (Fig. 11). All the susceptibility maps 

classified as more susceptible the road sectors located below slopes of SL higher than 20°, with HEI lower than 50 m and with 10 

DIST in the range of 40–100 m. Moreover, Model 2 and Model 3 discriminated as more susceptible those road traits in 

correspondence of areas with medium-high and high IC, generally higher than –3, regardless of the land use which covered 

the slope above the road. 

4.3 Susceptibility maps according to different scenarios of land use 

The assessment of the predictive capabilities of the GAM models related to the actual scenarios revealed that Model 2 was the 15 

best one. This model took into account for several morphological and hydrological features of the slopes upstream the road 

sectors and the sediment connectivity, evaluated according to the linear modeling of IC parameter. Due to the importance of 

considering IC distribution in the evaluation of the routes that could be affected by shallow landslides, susceptibility scenarios 

were created varying IC maps input according to three defined scenarios of land use distribution hypothesized for the study 

area (Scenario 2, Fig. 2c; Scenario 3, Fig. 5a; Scenario 4, Fig. 5b). In fact, IC may change as a function of the change in the 20 

distribution of W factor used in the calculation of this index. 

Fig. 12 illustrates the influence of different land use scenarios on IC. Its spatial distribution seemed not to be affected by land 

use changes presented in the considered scenarios. Thus, the connectivity of a particular hillslope kept approximately equal to 

the actual scenario. This was also confirmed by the mean and the standard deviation of the distribution of IC values in the 

study area, which remained equal to -3.20/-3.17 and 0.72/0.74, respectively. 25 

The similar maps of IClin obtained for the different land use maps implicated that the susceptibility distribution along the road 

network of the study area did not change significantly for the different considered scenarios (Fig. 13). Compared to the 

susceptibility evaluation performed by Model 2 considering the actual scenario (Fig. 11), the differences on the percentages 

of the road network classified with low, medium-low, medium-high and high susceptibility by the other reconstructed scenario 

were negligible, ranging in the order of 0.1-0.2% (Fig. 13).  30 
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5 Discussions 

The assessment of the susceptibility of a road sector to be affected by slope instabilities is an important tool in defining the 

risks to the infrastructure and to the people which are engaged directly or indirectly by the same route (Bil et al., 2014). Direct 

and indirect economic losses induced by damages to roads provoked by landslides are widespread all over the world and are 

going to increase as a consequence of the growth in the triggering of landslide events caused by climate changes and economic 5 

rising income (Nemry and Demirel, 2012; Matulla et al., 2017). 

For these reasons, this work aimed to develop and test a methodology able to classify, in different susceptibility classes, the 

traits of a road network, basing on the probability of being affected by sediments mobilized by a landslide triggered above the 

road. Similar approaches have been already developed and tested by different authors for particular 

geological/geomorphological settings (Budetta, 2004; Jaiswal et al., 2010a, 2010b, 2011; Quinn et al., 2010; Michoud et al., 10 

2012; Bil et al., 2014; Ramesh and Anbazhagan, 2015; Pellicani et al., 2017). Instead, the proposed approach helps in filling 

the gaps and the limits still open in the definition of a reliable and, potentially, repeatable methodology. 

First, the susceptibility model is based on a data-driven technique where several steps are carried out in order to obtain the 

most reliable representation of the real conditions. Data-driven models, that are based on the statistical relationships between 

predictors and response variables, depend strictly on the reliability of the inventories of the response variable (in this case, the 15 

sector of the road network hit by shallow landslides). These databases are used to find the statistical connections between 

predictor and response variables for defining the susceptibility model (Guzzetti et al., 2006; Corominas et al., 2014). Besides 

this limitation, data-driven are most flexible to be used at different scales of analysis (from site-specific to regional scale) and 

do not require a lot of data not easily to be estimated as for the physically-based models (Corominas et al., 2014). The proposed 

model uses GAM method applied to the susceptibility of roads to landslides for the first time. This model allows to insert some 20 

of the input predictors as non-linear variables (in this case, slope curvature, catchment slope, topographic wetness index, 

distance from shallow landslides source area, index of connectivity), understanding better the complex relationships which are 

present in an area between predisposing factors and susceptible roads (Philips, 2006; Goetz et al., 2011). Moreover, before 

building the model, the individuation of the most important predictor variables among the generally used predisposing factors 

leads to improve the knowledge about mechanisms which regulate the location of the damaged roads in such an area, avoiding 25 

for collinearity and bias that could reduce the reliability of the susceptibility estimation (Farrar and Glauber, 1967; Hosmer 

and Lemeshow, 1990; Bai et al., 2010). The robustness of the proposed methodology is also confirmed by the low confidence 

degree measured for the different susceptibility models created, testifying the reliability in implementing this scheme for the 

assessment of roads most susceptible to landslides (Petschko et al., 2014). 

The first reconstructed susceptibility model (Model 1) takes into account for the most important predisposing factors in the 30 

study area, chosen among those morphological, hydrological and geological parameters taken into account for these analyses 

in different contexts by other Authors (Budetta, 2004; Jaiswal et al., 2010a, 2010b, 2011; Quinn et al., 2010; Michoud et al. , 

2012; Bil et al., 2014; Ramesh and Anbazhagan, 2015; Pellicani et al., 2017). The reliability of the model is quite fair, as 
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demonstrated by its AUC value (0.73) and by its high value of TP and TN indexes (22.3 and 45.8%, respectively). Model 1 

classified as susceptible all the road segments downstream to slopes characterized by high slope gradient (> 20°), limited 

height (< 50 m) and with shallow landslides triggering zones located very close to the road network (40-100 m). These settings 

are very widespread in the entire study area (Bordoni et al., 2015; Persichillo et al., 2016, 2018), but these particular features 

are not enough to discriminate more accurately those routes where damages provoked by sediments mobilized by shallow 5 

landslides are probable. 

Tarolli and Sofia (2016) and Persichillo et al. (2018) analyzed two different hilly and mountainous catchments, located in 

western USA and north-eastern Oltrepò Pavese, respectively, in order to highlight potential connections between a road 

network and the sediment delivery. Both the works quantified the sediment connectivity using the index of connectivity (IC), 

that allows evaluating the potential connection between hillslopes and features which act as targets for transported sediments 10 

based only on of the morphological and topographical characteristics and the vegetation cover of a territory. These works 

highlighted that the segments of the road network, which can act as a storage area for the sediments mobilized by a phenomenon 

upstream to the road, are those ones located in correspondence of zones characterized by high IC values. This aspect testifies 

how slope instability phenomena can actively deliver sediment to particular portions of a road network, producing also 

damages provoked by the impact of the mobilized materials with the infrastructure (Sidle et al., 2014; Klose et al., 2015). 15 

Starting from this observation, also IC was inserted in the model for the evaluation of the susceptibility of the roads to be 

affected by shallow landslides. Other two models were created, differing each other for the type of IC used. Model 2 uses IClin 

calculated according to the method proposed by Cavalli et al. (2013), where the W factor in the model is evaluated in a linear 

way. Model 3 uses ICnl, calculated by means also of a W factor evaluated in a non-linear way and in relation also to the both 

surface roughness and land use properties of a territory (Fryirs et al., 2007; Cavalli et al., 2008; Cavalli and Marchi, 2008; Gay 20 

et al., 2016; Kalantari et al., 2017). In these terms, both IClin and ICnl represent a structural connectivity depending on the 

morphological and land use attributes of a territory (Borselli et al., 2008; Cavalli et al., 2013; Crema and Cavalli, 2015). 

Models that consider also sediment connectivity have a higher predictive performance than model 1. This is testified by a high 

AUC (0.94 for Model 2 and 0.83 for Model 3) and by higher values of TP and TN (till 90.0% and 84.8%, respectively). 

Moreover, FP and FN of both these models are lower than Model 1 (till 10.0 and 15.2 respectively).  25 

The susceptibility maps produced through Model 2 and Model 3 identify the road sectors characterized by the highest values 

of IC (IC higher than –3) as the most susceptible. These conditions are measured in several routes regardless of the land cover 

present in the slope upstream the road. Among these models, Model 2, that consider IC calculated through the linear way, 

performs better than Model 3. Non-linearly reconstructed IC identified less areas with high connectivity than IClin. Thus, the 

estimated probability to be affected by sediment impacts is reduced in these road traits. ICnl is more representative of the 30 

sediment connectivity in lowland environments, where the connectivity is driven also by other factors (such as the amount of 

surface water runoff) together with the morphological features of the hillslopes (Fryirs et al., 2007; Gay et al., 2016; Kalantari 

et al., 2017). Its application in geomorphological settings characterized by a predominant hilly or mountainous morphology, 

such as the considered catchment, can implicate an underestimation on the connectivity or disconnectivity of the sediments, 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-457
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 24 January 2018
c© Author(s) 2018. CC BY 4.0 License.



16 

 

influencing also the correct assessment of the sectors of an infrastructure threatened by the material mobilized after a triggering 

event. 

The comparison of the best susceptibility model (Model 2) with the distribution of real case of road sectors damaged by 

sediments mobilized by shallow landslides triggered upstream the road has confirmed an excellent predictive performance of 

this model. This model allows to identify correctly both the road sectors hit by the accumulation zones of roto-translational 5 

shallow landslides triggered in the trenches present in halfway roads (B2 type) and the road traits affected by the materials 

mobilized by shallow landslides triggered in the slopes upstream the routes in correspondence of cultivated or abandoned 

hillslopes (Fig. 14). This reveals the suppleness of the methodology to estimate in a reliable way the most susceptible sectors 

of a road network also in the case of sediment source areas, represented by slope instabilities with different features.  

Nevertheless, Model 2 classifies wrongly some road sectors in the study area, as testified by the 15.2% of FN and of 10% of 10 

FP cases. FN are mostly located in few pixels, sometimes close to other road traits identified with medium-high or very-high 

susceptibility. These situations could be linked to local peculiar factors, which may affect road susceptibility, that are not 

completely described by the input predictors chosen for the model. On the contrary, FP cases correspond to road segments 

where high susceptibility (higher than 0.5) was estimated. These sectors are mostly located near to traits already affected by 

shallow landslides materials in past events (Fig. 15). They are in a buffer of less than 250 m, in particular between 50 and 200 15 

m, respect to sectors hit in past, and they present morphological and connectivity features similar to threatened traits. Hence, 

they could represent sectors which could be affected by future events occurred in the same study area, whether the settings of 

this zone and the triggering conditions will keep similar to past events. In these terms, susceptibility map obtained from Model 

2 is useful in determining accurately the susceptible sectors of a road network, furnishing an important tool for the management 

of the hazard and for sketching policies of risk reduction out. 20 

Due to the importance of sediment connectivity on the model capability, scenarios of susceptibility were reconstructed, through 

Model 2, starting from different IC maps were obtained considering particular land use distributions. In fact, changes in land 

use cause are represented by changes in W parameter of the IC calculation, provoking a potential variation in the connectivity 

distribution. The distribution of susceptibility and of the roads most probably affected by shallow landslides do not change 

significantly from the actual situation for the three different modeled scenarios (recovery of all cultivated vineyards, break on 25 

the abandonment, further increase of the abandoned areas). This is due to the similar values of W (0.6-0.8) characterizing the 

most widespread land covers of the study area, which thus induce to a limited change in IC value passing from a land use class 

to another one. Instead, it is worth noting that changes in land use distribution could have effects also on the physical 

morphology of the hillslopes (Fu et al., 2006; Tarolli et al., 2015). For example, the recovery of the cultivation of grapevines 

in a slope could lead to the development of a drainage system of the superficial and of the shallow waters and to modification 30 

on the slope morphology for the implantation of the vineyards. While the abandonment of previously cultivated vineyards 

induces changes in flow direction and regulation, with direct consequences on sediment production and delivery (Cevasco et 

al., 2014; Lieskovsky and Kenderessy, 2014; Tarolli et al., 2014; Prosdocimi et al., 2016). These actions could influence the 

movement of the rainwater and of the sediment mobilized by runoff, then reduce the connectivity and also the potential 
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susceptibility of a road located downstream. Hence, more detailed scenarios of susceptibility changes in relation to land use 

changes will take into account also for the morphological modifications linked to these changes, using also a higher resolution 

DEM (less than 1 m). 

6 Conclusions 

In this work, a non-linear data-driven approach, based on GAM, was developed for the evaluation of the susceptible road 5 

sectors of a network that could be affected by the sediments delivered from shallow landslides occurred upstream. The 

methodology assessed also the role of the sediment connectivity on susceptibility estimation, by the implementation of the 

index connectivity calculated according to a linear or a non-linear approach. 

Besides the use of an inventory of road damages referred only to three triggering events occurred from 2009 to 2014, the 

random partition of the entire dataset in two parts (training and test subsets), within a 100-fold bootstrap procedure, allowed 10 

to select the most significant predisposing variables. This provided a better description of the occurrence and distribution of 

the road sectors potentially susceptible to damages induced by shallow landslides.  

The best predictive capability was reached by a model which took into account also the index of connectivity, calculated 

according to a linear way. This index well represented the rates of connectivity and disconnectivity in the studied catchment, 

in relation to its morphology (steep slopes, narrow valleys) and the land uses (vineyards, abandoned areas, woodlands). Most 15 

susceptible road traits resulted in the ones located below steep slopes with a limited height (lower than 50 m), where sediment 

connectivity is high, regardless of the land use which covered the slope above the road. 

Different scenarios of land use were implemented in order to estimate possible changes in road susceptibility. Land use classes 

of the study area were characterized by similar effects on connectivity features, thus the index of connectivity did not change 

significantly with a consequent leakage of variations also on the susceptibility of the road networks. Larger effects on sediment 20 

connectivity could be induced by modifications in the morphology of the slopes (e.g. drainage system, modification of the 

slope angle) provoked by the abandonment or by the recovery of cultivations. Then, this could have effects on the sediment 

delivery and also on the susceptibility of a road to be hit by sediments mobilized upstream. 

The presented methodology allows identifying the most susceptible road sectors that could be hit by sediments delivered by 

landslides in a robust and reliable way. This tool can represent a fundamental starting point for improving the land management 25 

of the slopes where the source areas of the sediments could develop, in order to reduce the damages to the infrastructure and 

the related risks and economic losses. Moreover, the results of the susceptibility analysis can give asset managers indispensable 

information on the relative criticality of the different road sectors, thereby allowing attention and economic budgets to be 

shifted towards the most critical assets, where structural and non-structural mitigation measures could be implemented. 

Furthermore, thanks to the flexibility of the model in the selection of the predictors, the proposed model can be applied to areas 30 

with different geological, geomorphological and land use features, identifying the most important predisposing factors peculiar 

of each catchment. This method can be also implemented to areas characterized by much larger catchments than the ones 
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analyzed herein, with the only limit of the availability of high-resolution DEMs and of computational resources. Moreover, 

the methodology can be applied for estimating the susceptibility and the risks related to landslides affecting other fundamental 

facilities, such as railways, gas/oil pipelines, power lines. 
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Table 1: Overland flow Manning's n Roughness Values assigned to each class of land use maps available for the calculation of Wlin 15 
factor. 

Land use classes Manning’s n (-) 

Woodlands 0.40 

Uncultivated areas 0.35 

Grasslands 0.25 

Orchards/Arable areas/Vineyards 0.20 

Bare soil 0.05 

Urban areas 0.02 

Table 2: Frequencies (in %) of explanatory variables (both linear and non-linear) selected by 100-fold bootstrap procedure. The 

explanatory variables selected by 100-fold bootstrap procedure with an absolute frequency greater or equal than 80% are 

highlighted in bold red. In the brackets, the frequencies (in %) of selection of each variable as linear or non-linear is shown. The 

underlined number corresponded to the frequency of the selected function connected to each variable. SL: slope angle; ASP: slope 20 
aspect; CURV: slope curvature; LEN: slope length; HEI: slope height; CA: Catchment area; CS: Catchment slope; TWI: 

topographic wetness index; DIST: distance from the source area of a shallow landslide; GEO: bedrock geology; IC: index of 

connectivity. 

Model SL ASP CURV LEN HEI CA CS TWI DIST GEO IC 

1 

(Lin.-

Not Lin.) 

97 

(95-2) 

2 

(0-2) 

87 

(41-

46) 

36 

(36-0) 

88 

(45-

43) 

56 

(56-0) 
100 

(0-100) 

85 

(14-71) 

100 

(0-100) 
100 - 

2 

(Lin.-

Not Lin.) 

97 

(95-2) 

18 

(12-6) 

87 

(41-

46) 

19 

(19-0) 

88 

(45-

43) 

66 

(66-0) 
100 

(0-100) 

85 

(16-69) 

100 

(0-100) 
100 

100 

(5-95) 
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3 

(Lin.-

Not Lin.) 

97 

(95-2) 

18 

(11-7) 

87 

(41-

46) 

19 

(19-0) 

92 

(53-

39) 

65 

(65-0) 
100 

(0-100) 

95 

(12-83) 

100 

(0-100) 
100 

100 

(2-98) 

Table 3: Mean and standard deviation of accuracy for the training sets, the test sets and the final application of the model to the 

entire study area. 

Model Mean accuracy 

of training sets 

(-) 

 

Standard 

deviation of 

accuracy on 

training sets 

(-) 

Mean 

accuracy on 

test sets (-) 

 

Standard 

deviation of 

accuracy on 

test sets (-) 

 

Mean AUC of 

the model (-) 

95 % 

confidence 

interval of 

AUC of the 

model (-) 

1 0.71 0.01 0.70 0.01 0.74 0.73-0.75 

2 0.90 0.01 0.90 0.01 0.94 0.93-0.95 

3 0.82 0.01 0.82 0.01 0.83 0.82-0.84 

 

 

 5 

Figure 1: Geological setting and shallow landslides distribution of the study area. 
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Figure 2: Land use distribution and land use changes in the period 1954-2015: a) percentage of the area occupied by each land use 

class during the analyzed period; b) land use distribution in 1954; c) land use distribution in 1980; d) land use distribution in 2015. 

Land use maps were provided by the Lombardy Region and shared as part of the Infrastructure for Spatial Information in 

Lombardy (IIT) via the Geoportal (Lombardy Region Geoportal: http://www.cartografia.regione.lombardia.it/geoportale, last 5 
access: 11 December 2017). The detailed information regarding the method to realize these maps are available in Fasolini (2014). 
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Figure 3: a) Primary road network of the study area, with the shallow landslides events occurred between 2009 and 2014 which 

affected these routes. This road network is composed of provincial and municipal roads (available from: Administration of Pavia 

Province and Infrastructure for Spatial Information in Lombardy (Lombardy Region Geoportal: 

http://www.cartografia.regione.lombardia.it/geoportale, last access: 11 December 2017). b) A shallow landslide (B2 type), triggered 5 
in correspondence of the road trench upstream the route, that blocked the route. c) A shallow landslide triggered in a slope cultivated 

with vineyards, whose mobilized materials destroyed completely a road trait downstream. 

 

Figure 4: Flow-chart containing the scheme for the implementation of the proposed model. 
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Figure 5: Potential land use scenarios used for the assessment of road susceptibility to shallow landslides in the study area, together 

with 1980 land use distribution (Fig. 2c): a) Scenario 3, correspondent to the transformation of actual uncultivated areas in 

woodlands; b) Scenario 4, correspondent to an increase in abandoned areas similar to that one in 1980-2015 period. 

 5 

Figure 6: Actual (2015) IC maps corresponding to the linear calculation of the index since Wlin (a) and to the non-linear calculation 

of the index since Wnl (b). A detail of the northern sector of the study areas is reported for IClin (c) and ICnl (d) maps. 
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Figure 7: Boxplot of IC values distribution for the actual scenario (2015), for the linear and non-linear calculation of the index. 

 

Figure 8: 95% bootstrap confidence bands of ROCs: a) Model 1; b) Model 2; c) Model 3. d) Percentage of true positives (TP), true 

negatives (TN), false positives (FP), false negatives (FN) of the different models. 5 
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Figure 9: Maps of the amplitude of 95% bootstrap confidence intervals of the probability associated to each pixel of the studied 

area: a) Model 1; b) Model 2; c) Model 3. 
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Figure 10: Maps of the susceptibility of the road segments to be affected by shallow landslides: a) Model 1; b) Model 2; c) Model 3. 
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Figure 11: Percentage of the road network classified with low, medium-low, medium-high or high susceptibility to be affected by 

shallow landslides for each GAM model. 

 

Figure 12: IClin maps of the different land use scenarios considered: a) Scenario 2: land use distribution equal to that one of 1980 5 
(highest extension of vineyards); b) Scenario 3: transformation of actual uncultivated areas in woodlands; c) Scenario 4: increase in 

abandoned areas similar to that one occurred in 1980-2015 period. 
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Figure 13: Maps of the susceptibility of the road segments to be affected by shallow landslides according to the different land use 

scenarios: a) Scenario 2: land use distribution equal to that one of 1980 (highest extension of vineyards); b) Scenario 3: 

transformation of actual uncultivated areas in woodlands; c) Scenario 4: increase in abandoned areas similar to that one occurred 

in 1980-2015 period; d) percentage of the road network traits of different susceptibility classes for the considered scenarios. 5 
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Figure 14: Examples of correct assessment of the susceptibility performed by Model 2, for road sectors hit by B2 type shallow 

landslides and by other types of phenomena. 

 
Figure 15: False positive (FP) cases identified through the susceptibility map obtained from Model 2. It is worth noting that FP cases 5 
are mostly located close (in a range lower than 250 m) to road sectors already affected by shallow landslides, in similar morphological 

and connectivity settings. 
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